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Machine learning analyses are widely used for predicting cognitive abilities, yet there are pitfalls that

need to be considered during their implementation and interpretation of the results. Hence, the present

study aimed at drawing attention to the risks of erroneous conclusions incurred by confounding

variables illustrated by a case example predicting executive function performance by prosodic features.

Healthy participants (n = 231) performed speech tasks and EF tests. From 264 prosodic features, we

predicted EF performance using 66 variables, controlling for confounding effects of age, sex, and

education. A reasonable model t was apparently achieved for EF variables of the Trail Making Test.

However, in-depth analyses revealed indications of confound leakage, leading to inated prediction

accuracies, due to a strong relationship between confounds and targets. These ndings highlight the

need to control confounding variables in ML pipelines and caution against potential pitfalls in ML

predictions.

Prediction of cognitive performance is a central goal in neuroscience and related areas of research.

Predicting cognitive performance is relevant for several reasons. Firstly, it enables the identication of

individuals who may be at risk of cognitive decline or neurodegenerative diseases at an early stage [1] [2]

[3] [4] [5] [6]. This, in turn, allows for preventative measures and early treatment. Secondly, predicting

cognitive performance can help us understand the underlying mechanisms of cognitive function and

identify potential biomarkers for cognitive abilities [7] [8]. Thirdly, it can aid in the development of

personalised training programs based on an individual's cognitive capabilities [9].

With the rising number of variables potentially related to cognitive performance, methods for predicting

cognitive functions also increase in complexity. Machine learning (ML) offers a way to study individual

differences by inspecting many different possible inuencing factors. ML is a eld of articial

intelligence in which models are trained on data, allowing them to uncover intricate relationships and

improve over time. It involves advanced statistical algorithms, which learn patterns from feature-target

data with the aim to generalise to previously unseen data [10]. Such methods are of practical use for

exploratory research in various elds because unknown, linear, but most importantly non-linear,

relationships of a large number of variables can be inspected easily and fast. ML approaches are gaining

more importance as they are able to predict the target value of an unseen individual using their features.

For instance, when impaired prosodic abilities are related to a disorder, a ML model could be useful for

early detection and diagnosis. However, application of ML can be problematic when applied

inappropriately leading to inaccurate results and misleading conclusions.

One of the main challenges in ML relates to preventing models from displaying prediction values that are

overly high in comparison to their actual predictive power [10] [11]. Barring other reasons, this is usually

the case when information that should be kept strictly separate is unintentionally fed into the ML

pipeline. This process is referred to as leakage [11] [12]. One form of leakage is the incorporation of
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information from confounding variables through the procedure of confound removal, i.e. confound-

leakage [13]. Confounding variables share variance with both the dependent (target) and the

independent (explanatory or predictive) variable. This means that they are associated with both variables

in the analysis and can potentially have an impact on the relationship between them. It is desirable to

remove the confounding information such that the model's predictions are not inuenced by it. However,

it is plausible that the standard confound removal procedure using linear regression might inadvertently

introduce confounding information rather than removing it, causing confound leakage [14].

In the following, we demonstrate this issue using a specic example from our research, which aimed to

predict cognitive performance based on prosodic variables. As executive functions are crucial cognitive

capabilities in everyday human life and constitute a basic requirement for speech and communication

[15] [16] [17]. we focused on predicting executive function performance in this particular application.

The term “executive functions” represents a heterogeneous set of distinguishable processes [18].

According to Ward, executive functions represent complex abilities, with which people optimise their

performance in situations that require the organisation of a series of cognitive processes [19]. In spite of

the lack of a universal denition of executive function performance and its subordinated domains [20],

the grouping of working memory, inhibition, and cognitive exibility [21] [22] is still the most popular [23].

Executive functions are of great relevance in relation to various pathologies, as their impairment can be

observed in numerous neurological and psychiatric disorders [24] [25] [26] [27] [28]. For this reason, their

investigation, both in healthy people and in different patient groups, constitutes a central component of

research and diagnostics. Despite great efforts, examination and characterisation of executive functions

have proven to be extremely dicult [29]. Not only is data acquisition time-consuming and costly, but the

results are also dependent on subjective application factors, such as the qualication of the test

conductor and the current condition of the person being tested. In addition, the measured performance

depends on the individual's motivation.

What we can take advantage of in the context of testing EF is the knowledge about the relationship

between executive functions and language: It is assumed that executive functions act as a cognitive

control mechanism for the syntactic processing of sentences [30]. Moreover, a large variety of disorders

in communication ability are associated with impaired executive functions, including dysarthria, aphasia,

language pragmatic disturbances, and verbal reasoning impairments [15]. In addition to the symptoms

shown on the linguistic levels of phonetics and phonology, morphology and syntax, semantics and

pragmatics, the described aspects of the impaired language function also relate to the level of prosody.

Prosody can be dened as the totality of all acoustically perceptible forms of expression of speech [31].

Since prosody belongs to the realm of the phonetic structures of language and is not tied to the

categories of lexeme, morpheme or phoneme, prosodic subfunctions belong to the class of

suprasegmentals of language. Although several classications of prosody have been proposed, four

main domains can be distinguished: frequency related parameters, energy/amplitude related

parameters, spectral parameters, and temporal parameters [32]. Fundamental frequency refers to the F0
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frequency and is described as the middle pitch. Intensity of speech relates to loudness, whereas duration

is dened as the quantity of speech [31].

Against the background of current literature regarding the connections between linguistic and cognitive

processes, methods can be developed to draw conclusions about underlying cognitive performance with

the help of speech variables. In particular, the analysis of prosodic features by speech samples provides

advantages, as it offers a high external validity as well as time and cost eciency compared to classical

diagnostic procedures [33] [34] [35]. This is why procedures for objective speech analysis are gaining

increasing popularity and are already in use in clinical diagnostics [36] [37].

Studies suggest that prosodic impairments may occur due to immature executive functions [38]. In

addition, earlier patient studies have already shown a connection between right-hemispheric frontal brain

damage and impairments of prosody [39] [40]. Recent studies also demonstrated a relation between

suprasegmental disorders, regarding impaired executive functions, in foreign accent syndrome [41] [42].

Moreover, impaired working memory and impairment in prosody were observed in Parkinson’s Disease

[43], while reduced performance of fundamental frequency in connection with executive function

damage was shown in frontotemporal dementia [44]. Furthermore, a link between prosody and divided

attention, working memory and inhibition was shown in Autism Spectrum Disorder [45]. There is also

clinical evidence that formant frequencies and Mel Frequency Cepstral Coecients are associated with

depressive disorders and potentially act as a biomarker [46] [47] [48] [49]. A relationship between

prosodic performance, precisely disuencies and inhibition in healthy participants was also reported by

Engelhardt and colleagues [50].

In summary a link between decient executive subfunctions and impaired prosodic skills is reported in

different pathologies [38] [37] [48] [36]. These associations can be utilised to predict cognitive functions.

However, these ndings are primarily based on patient studies. Therefore, our initial aim was to test

whether the reported correlations could predict cognitive performance in a healthy sample.

Participants were recruited at the Forschungszentrum Jülich and through social networks. Testing took

place at the Forschungszentrum Jülich (Germany) in 2018. Each test session lasted between 150 to 180

minutes, depending on the participants’ speed and the duration of the instructions. 231 healthy

participants without a diagnosis of neurological or mental impairment were included in the present study

(138 female, 93 male). The mean age of the sample at testing time was 35.2 years (standard deviation =

11.1, minimum = 20, maximum = 55). All participants were monolingual German. The sample varies

regarding the level of education, ranging from participants who nished secondary school (n = 8),

professional school/job training (n = 62), high school with a university-entrance diploma (n = 69), and

university with a university degree (n = 92). All participants were paid an expense allowance of 50 EUR.
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The study was approved by the ethics committee of Heinrich Heine University Düsseldorf under the

registration number 2017064341. Informed consent was obtained from all participants. All experiments

were performed in accordance with relevant named guidelines and regulations. Part of the data used in

this study is publicly available upon request, as not all participants consent to data sharing [51].

The test sessions were divided into two parts: Firstly, the executive performance of the participants was

assessed. Secondly, spontaneous speech performance was recorded in order to extract prosodic

features from speech samples.

The executive function performance was assessed by the computerized test batteries Vienna
Testsystem [52] and Psytoolkit [53], containing common standard tests for measuring executive function

performance. In total, 66 variables from 14 different assessments of executive function performance

were collected: Trail Making Test (TMT) [54], Raven’s Standard Progressive Matrices [55], Wisconsin Card

Sorting Test [56], Tower of London [57], and Cued Task Switching [58] are related to cognitive exibility.

Performance of N-back Non-verbal [59], Non-verbal Learning Test [60], and Corsi Block Tapping Test [61]

were used in relation to working memory. Inhibition was tested by Stop Signal Task [62], Simon Task [63],

and Stroop Test [64]. Divided Attention Test [65], Spatial Attention Test [65], and Mackworth Clock Test

[66] were used to measure divided and spatial attention as well as vigilance. An overview of the

assessed tests and the exact variables from these are shown in Table 1 (see Appendix A for the

descriptions of the tests).

Spontaneous speech was tested based on a collection of three different speech samples per participant.

Firstly, the participants were asked to describe the Cookie Theft Picture [67] within 90 seconds in as

much detail as possible. Secondly, the participants were asked to talk about what they had watched on

television / what kind of book they had read the day before. Thirdly, the participants were asked to

describe what their favourite holiday trip would look like if money and time were no limiting factors. For

the narrative tasks retelling a story and ctional storytelling, they were asked to talk for ve minutes.

Participants conducted all tests via a laptop, an external keyboard, and a headset-microphone.
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Table 1
Assessed executive function variables adapted from Amunts et al. [68] [69]

COGNITIVE FLEXIBILITY

Trail Making
Test

TMT Processing time part A, Processing time part B, Difference part B-A
[seconds], Quotient B/A, Errors part A, Errors part B

Raven’s
Standard
Progressive
Matrices

SPM Correct items, Processing time

Wisconsin Card
Sorting Test

WCST Number of errors, Number of perseveration errors, Number of errors
(non perseveration), Timeouts

Tower Of
London

TOL Planning ability, Number of correct responses, Changed his/her
mind, self-correction, Choice of wrong pole, Choice of blocked pole,
Choice of impossible position

Cued Task
Switching

SWITCH Number of errors, Timeouts, Errors of items which are incongruent

WORKING MEMORY

N-back Non-
Verbal

NBN Correct items, Number of commission errors, Number of errors,
Mean reaction tine of correct items [seconds], Mean reaction time of
errors [seconds]

Non-Verbal
Learning Test

NVLT Sum of correct responses, Sum of false responses, Sum of
difference between correct minus false responses, Processing time

Corsi Block
Tapping Test

CORSI Block span, Correct items, False items, Missed items, Sequency
errors

INHIBITION

Stop Signal
Task

INHIB Reaction time [seconds], Mean stop signal delay [seconds], Stop
signal reaction time [seconds], Number of commission errors,
Number of ommission errors

Simon Task SIMON Number of errors in compatible items, Number of errors in
incompatible items

Stroop Test STROOP Reading interference [seconds], Naming interference [seconds],
Interference-difference [seconds], Number of false reactions
(reading-baseline), Number of false reactions (naming-baseline),
Number of false reactions (reading-interference), Number of false
reactions (naming-interference), Processing time

ATTENTION / VIGILANCE

Divided
Attention Test

WAF-G Number of missed items (unimodall visual), Number of false alarm
(unimodal visual), Mean reaction time (unimodal visual) [ms],
Number of missed items (crossmodal visual/auditive), Number of
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false alarm (crossmodal visual/auditive), Mean reaction time
(crossmodal) [ms]

Spatial
Attention Test

WAF-R Mean reaction time (unannounced items) [ms], Number of missed
items (correct announced items), Mean reaction time (correct
announced items) [ms], Number of missed items (wrong announced
items), Mean reaction time (wrong announced items) [ms], Mean
reaction time (short SOA) [ms], Mean reaction time (long SOA) [ms],
Number of errors

Mackworth
Clock Test

MACK Number of missed jumps, Number of false alarms

To generate the prosodic features from the audio les collected from the speech tasks, the toolbox

openSmile ( - ource edia nterpretation by arge feature-space xtraction) [70], version 2.1.3 was

used to extract the suprasegmental parameters. Although the extraction and analysis of prosodic

parameters for research purposes have been done for decades in various elds and is currently a topic

of big interest in the context of speech biomarkers in different pathologies [33] a lack of standardisation

and thus comparability was observed [70]. The benet of using the open-source toolbox OpenSmile is its

standardised automatic computation of the prosodic features resulting in a xed feature set. It offers the

extraction of prosodic features within a set that corresponds to the main categories frequency

(representing the fundamental frequency), energy/amplitude (representing the intensity), spectral

parameters, and temporal parameters (representing the duration). The choice of parameters was guided

by the criteria of potentially indexing physiological changes in voice production and its theoretical

signicance in previous literature [32]. The feature set extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS) was chosen, which contains 88 prosodic features. In order to keep the extraction

comparable, the rst 90 seconds from each audio le were chosen as input. As there are three audio

samples per participant, a total of 264 prosodic features were generated per participant. All features

were z-scored, i.e. the mean value was removed, and the variance was scaled to one unit. An overview of

the extracted features and their descriptions, as well as the corresponding prosodic category, are shown

in Table 2.
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Table 2
Grouped listing of the prosodic features extracted by the toolbox OpenSmile [70].

FREQUENCY RELATED PARAMETERS

F0semitone

Mean, standard deviation,
percentiles, range, rising
slope, falling slope

10 Pitch, logarithmic F0 on a semitone frequency scale,
starting at 27.5 Hz (semitone 0)

Jitter

Mean, standard deviation

2 Deviations in individual consecutive F0 period lengths

F 1–3 frequency & bandwith

Mean, standard deviation

12 Centre frequency of 1., 2., 3. formant, bandwidth of rst
formants 1, 2, 3

ENERGY / AMPLITUDE RELATED PARAMETERS

Loudness

Mean, standard deviation,
percentiles, range, rising
slope, falling slope

10 Estimation of perceived signal intensity from an
auditory spectrum

Shimmer

Mean standard deviation

2 Difference in peak amplitudes of consecutive F0
periods

Harmonics to Noise Ratio

Mean, standard deviation

2 Relation of energy in harmonic components to energy
in noise- like components

SPECTRAL PARAMETERS

Spectral Flux

Mean, standard deviation

3 Difference of the spectra of two consecutive frames

Mel Frequency Cepstral
Coecients 1–4

Mean, standard deviation

16 Perceived pitch of the frequency spectrum

Harmonic differences

Mean, standard deviation

4 Ratio of energy of the rst F0 harmonic (H1) to the
energy of the second F0 harmonic (H2) / to the energy
of the highest harmonic in the third formant range (A3)

Alpha Ratio

Mean, standard deviation

3 Ratio of summed energy from 50-1000 Hz and 1–5 kHz

Hammerberg Index

Mean, standard deviation

3 Ratio of the strongest energy peak in the 0–2 kHz
region to the strongest peak in the 2–5 kHz region
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Spectral Slopes

Mean, standard deviation

6 Linear regression slope of the logarithmic power
spectrum in the specied bands

F 1–3 Energy

Mean, standard deviation

6 Formant 1, 2, and 3 relative energy

TEMPORAL PARAMETERS

Loudness peaks per second 1 Number of volume highlights per second

Voiced segments

Mean, standard deviation

3 Amount of continuously voiced regions

Unvoiced segments

Mean, standard deviation

2 Amount of the continuously unvoiced regions

Equivalent Sound Level 1 Sound pressure level which has the same total energy
as the actual uctuating noise

Data management and analysis were performed using Python 3 [71]. A ML approach was applied to the

data following the machine learning library JuLearn [72]. The 264 extracted prosodic feature variables

were specied as features and the 66 executive function variables as targets. The initial goal of our

analyses was to predict each of the executive function targets using all of the prosodic features.

Firstly, cross-validation was used to determine the model performance. In cross-validation, the data set

is randomly partitioned into equally sized folds. All folds except for one, are used for training the model.

The hold-out fold is then used to determine the trained model’s performance on unseen data. This

process is repeated once for each fold as the validation fold. Then, the average of the validation

performances is calculated [73]. Cross-validation was applied with ten folds (Fig. 1). Since all of the

prosodic features were used to predict each of the 66 targets, 66 independent cross-validation models

were performed.

In order to keep the folds balanced, stratication by target was implemented into the cross-validation

pipeline, meaning that the different folds approximately followed the same distribution of the respective

target [14]. Stratication can usually improve the success of model training by ensuring that the training

and test data have similar distribution which reduces the risk of bias or error in the evaluation of the

model. Knowing the inuence of different demographic aspects on prosodic performance [74] [75] we

regressed out the effects of the confounding variables sex, age, and education from the features with a

linear regression model. This is standard practice since the goal is to shed light on the relationship

between executive functions and prosodic features, independently of factors that are additionally related

to the constructs [76] [12].
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There are several regression models to choose from for usage in machine learning approaches. With his

theorem No Free Lunch Wolpert postulated that there is no general best machine learning algorithm for

all predictive modeling problems such as classication and regression [77]. We chose the Random

Forest Regressor as it has already demonstrated to predict executive functions in previous studies[69]

[78][79] and is commonly used[80] [81]. Random Forest is an ensemble estimator that ts a number of

decision trees on various sub-samples of the dataset and uses averaging to improve the predictive

accuracy and to control over-tting. The decisions made by each tree carry equal weight, while the order

of the decisions is random [82].

Following Poldrack et al. [83], accuracy was assessed by the coecient of determination (R²) [84], which

measures how well the regression predictions approximate the real data points. It can be interpreted as

the proportion of the variance in the dependent variable that is predictable from the independent

variables. R² ranges from 0 to 1, where 1 indicates that the regression model perfectly predicts the data.

In cases of negative values, the mean of the data alone ts the results better than the predicted values.

Thus, negative values mean a very poor generalisation of the model. For the cross-validation results, the

mean of R² was calculated over 10 folds.

Secondly, the aim of our study was to investigate which of the many prosodic features were important in

connection to all features to train the model successfully. For this purpose, the feature importance was

calculated by the impurity-based feature importance of Random Forest, also known as the Gini

importance [85] [86]. When building a decision tree, features are selected at each node in order to divide

the data into subsets that are as “pure” as possible with regard to the target variable. Gini Impurity

measures how often a randomly chosen data point within a subset would be incorrectly labeled,

reecting the degree of disorder or „impurity” within the data. In contrast, Gini Importance assesses the

overall decrease in node impurity resulting from splits based on a specic feature. It considers the

probability of reaching each node and calculates the weighted reduction in impurity. Features with higher

Gini importance are considered more important for predicting the target variable [85]. Feature

importance was computed for the nal estimator, as well as for each fold to estimate the variability of

the importance. The sum of all feature importance scores adds up to 1.

Thirdly, detailed analyses were conducted to examine the effects of confound removal and stratication.

Here, we used other models such as Random Forest Regressor, ExtraTree Regressor, and Ridge

Regression to regress out the confounds from the features in order to compare model performance

depending on how the confounds were removed.

Moreover, we employed an approximate permutation test approach, suggested by North and colleagues

[87], to disentangle predictive information of the features from that of the confounds. To achieve this, we

permuted each feature separately. Here, the association between features and targets is randomised,

while the association between confounds and targets remains unchanged. 10-fold cross-validation was

performed for each permutation, and R² scores for 1000 permutations were used to construct an

empirical null distribution, from which p-values were computed as the proportion of permuted R² scores
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greater than or equal to the R² score of the original non-permuted data. The threshold value for the two-

tailed test was set to p = 0.05. Signicant p-values indicate that predictive information stems from the

features rather than the confounds alone.

In cross-validation, the models were trained to predict each of the EF targets using all of the prosodic

features. Regression of the confounding features sex, age, and education, and stratication by target

distribution were performed. Evaluation was estimated using the coecient of determination R²

averaged over the 10 folds.

Out of 66 executive function targets, 53 variables did not show positive R² values, indicating no

predictive power for these targets using our modeling approach. 13 executive function targets showed

positive R² values (Fig. 2). However, only two targets, TMT BTA (processing time part A) and TMT BTB

(processing time part B), showed R² values > 0.1, representing a reasonable model t. The described

TMT variables belong to the cognitive exibility domain. An overview of R² of all 66 EF targets can be

found in the supplements.

Feature importance was calculated in order to determine which of the prosodic features were

particularly important for successfully predicting the EF targets. Since we observed good prediction

performance (R² > 0.1) for TMT BTA and TMT BTB, we only computed feature importance for these

targets. Figures 3 and 4 present the ten most important features predicting the EF targets TMT BTA and

TMT BTB (see Appendix B for the feature importance of all prosodic variables). The majority of features

identied as most important belong to the spectral prosodic domain. The most frequently appearing

prosodic features were the Mel Frequency Cepstral Coecients.

For the purpose of validation, we contrasted the effects of confound removal and stratication on the

prediction performance for the targets TMT BTA and TMT BTB. To begin with, we compared the

prediction results with the performance of the cross-validation model without regressing out the

confounding variables sex, age, and education. These results indicated a worse prediction compared to

the results with confound removal. Results are displayed in Fig. 5. For both TMT targets, prediction

performance decreased when not removing the confounding variables. This is true for the stratied set

up, as well as for the non-stratied set up. Prediction performance also decreases when not stratifying

the cross-validation folds.

To explore the mechanism behind the decrease in prediction performance for the pipeline without

confound removal further, and to examine whether it is related to the specic confound removal model

used, we exchanged the standard confound removal model Linear Regression with other models, such

as Random Forest Regressor, ExtraTree Regressor and Ridge Regression. As demonstrated in Fig. 6, the

prediction performance varies depending on the choice of the confound removal model. The pipelines

with the confound removal models Linear Regression and Ridge Regression indicate higher R² values
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than the pipelines with the confound removal models Random Forest Regressor and ExtraTree

Regressor.

Finally, we evaluated the conditions with different confound removal models by using permutation tests.

For the EF target TMT BTA with the cross-validation regressor Random Forest and the confound removal

model Random Forest R² of 0.057 is signicant (p = 0.001). For the EF target TMT BTB with the cross-

validation regressor Random Forest and the confound removal model Ridge Regression R² of 0.196 is

signicant (p = 0.032) such as with the cross-validation regressor Random Forest and the confound

removal model Linear Regression R² of 0.205 (p = 0.017). As shown in Table 3, all other positive

prediction performances, measured by R² values, are not signicant.

Table 3
Comparison of different confound removal models complemented by the p-value.

CRmodel = Confound removal model, RF = Random Forest Regressor, ET = ExtraTree
Regressor, LG = Linear Regression, Ridge = Ridge Regression, withoutCR = without

confound removal, strat = stratied.

CRmodelRF -0.142 0.009 CRmodelRF -0.343 0.161

CRmodelRF_strat 0.057 0.001 CRmodelRF_strat -0.171 0.069

CRmodelET -0.172 0.001 CRmodelET -0.156 0.001

CRmodelET_strat -0.003 0.005 CRmodelET_strat -0.082 0.001

CRmodelRidge 0.097 0.691 CRmodelRidge 0.106 0.058

CRmodelRidge_strat 0.262 0.188 CRmodelRidge_strat 0.196 0.032

CRmodelLG 0.102 0.633 CRmodelLG 0.081 0.162

CRmodelLG_strat 0.260 0.200 CRmodelLG_strat 0.205 0.017

To summarise, we initially found a moderate predictive power of TMT BTA and TMT BTB by prosodic

features. However, considering all results, there is a decrease in predictive power when not removing the

confounding variables sex, age, and education, indicating confound leakage. In addition, the predictive

power increases when stratication is performed. Pipelines with different models for removing

confounding factors perform differently. Ultimately, two out of 20 models are signicant, which suggests

that the prediction is at least partly driven by the features in these models.
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This study is based on an investigation of the relationship between executive functions and prosody

through examining whether prosodic features can predict executive functions. In summary, we

preliminary found a moderate predictive power of prosodic features for TMT BTA and TMT BTB.

However, considering all results, there is a decrease in predictive power when not removing the

confounding variables sex, age, and education, indicating confound leakage for most of the models.

Firstly, we evaluated 66 models, each predicting one executive function variable from the prosodic

features. We employed 10-fold cross-validation with stratication by target variable and confound

removal of sex, age, and education. The results showed poor or no prediction performance for 64 out of

66 EF targets.

Only the models for the TMT targets TMT BTA and TMT BTB, relating to cognitive exibility, initially

appeared to have a moderately valid predictive performance. Without the additional analyses that we

conducted for validation, these results could be interpreted as follows: Our results would have conrmed

ndings from previous studies on a narrow correlation between executive functions and language in

general [88] [17], and would have been in line with research conducted in different patient cohorts [43]

[45] [50], reporting connections between cognitive exibility and prosody [34]. In our study, we would

have found these associations in healthy participants. Consistent with the literature, this study would

have shown that features from various prosodic domains are important for the models to learn. This

would have validated that prosodic features of different kinds are closely related to executive functions,

as described in previous studies [89] [90] [91]. Furthermore, predominantly spectral prosodic parameters

would have shown importance for the model ts, especially the Mel Frequency Cepstral Coecients,

which are already used as a biomarker in depressive disorders [47] [49]. As described in Table 2, the Mel

Frequency Cepstral Coecients are dened as the perceived pitch of the frequency spectrum. More

precisely, these are coecients of the Mel scale, which relates the perceived frequency of a tone to the

actual measured frequency. It scales the frequency in order to match more closely what the human ear

can hear [92]. It therefore would have been deduced from the study that spectral parameters, in

particular the Mel Frequency Cepstral Coecients, are closely related to executive functions.

Furthermore, the ndings would have conrmed that easy-to-capture spontaneous speech derived from

different tasks is suitable for the extraction of prosodic features. In summary, the present research

would have raised the possibility that this predictive power of prosodic features could be an important

biomarker for executive function impairment or its future decline.

However, given the additional in-depth analyses of the ML pipeline that partly invalidate the initial results,

our ndings need to be reinterpreted as follows:

We expect models to perform better if the effects of the confounding variables are not excluded, given

that this would provide more information for the algorithm to learn. However, the prediction performance

decreases for both TMT targets when not removing the confounding variables sex, age, and education.

This is not in line with our expectation because in our scenario, the prediction performance should be

worse if the confounding variables are removed, as the algorithm can then only learn from the
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association between confound-free features and the target. We found that information from these

confounds, namely sex, age, and education leaked into the predictions through the confound removal

procedure. The inadvertent injection of this information occurs particularly when the confounding

variables and the targets show a strong correlation and this is coupled with the use of a high number of

features, as explained by Hamdan et al. [13] and Sasse & Nicolaisen-Sobesky et al. [12]. This is indeed

the case in our data set (see Appendix C). There is a strong correlation between the TMT targets and the

confounding variables. In addition, we use a high number of features within the cross-validation pipeline,

because we wanted to investigate EF and prosody in an exploratory manner. While our data set was

relatively small compared to most ML studies, which typically increases the risk of leakage [93], it

represents a reasonable size when compared to studies investigating speech biomarkers [33]. The

results also conrm that these observations occur in both stratied and non-stratied conditions. As

expected, it can be shown that stratication by target distribution generally increases the predictive

performance. This is in line with Diamantidis et al. [94] and Hastie et al. [14], who show that equally

representative cross-validation folds lead to improved predictive power. Additionally, it is demonstrated

that stratication can also increase confound leakage This can be derived from the fact that the

difference in predictive power between the pipelines with and without confound removal is even greater

in the stratied condition (Fig. 6). Furthermore, the results illustrate that the observed confound leakage

is not bound to the use of Linear Regression as the confound removal model, but also occurs when other

models are employed.

Overall, these observations raise concerns about the trustworthiness of the primary results. Nonetheless

one cannot denitively rule out whether information from the features also inuenced the predictive

power of the present results. We, therefore, conducted permutation testing for the different cross-

validation models. Since the permutation tests for the two TMT targets each identied models that can

be interpreted as signicant, we speculate that predictive power is partly due to the information

contained in the features despite the confounding variables also contributing to the prediction. However,

this was only observed in two of 66 EF targets and for these two targets only in specic confound

removal models. For this reason, we only conditionally derive the predictive power of prosodic features.

Further analyses of this type with other data sets would need to be carried out to verify this.

In conclusion, the present results highlight the challenges and pitfalls when conducting ML analyses with

the aim of predicting variables of interest including cognitive performance. This example shows which

misinterpretations could have been deduced from the initial results. This can be particularly dangerous if

the ndings match previous studies, as in the case here. This is crucial, as ML studies are becoming

increasingly important and widely employed, especially with the accessibility of large amounts of data. In

this respect, we caution and recommend that when using ML analyses to predict cognitive performance,

quality controls should be performed to prevent false results. This is also true when interpreting ML

results of other researchers. This study has contributed to uncovering more insight into a pitfall in ML

analysis arising due to confound leakage. As confounding is ubiquitous in social and biological sciences,

it should be further deciphered how confound leakage occurs and which contributing factors can be
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taken into account. Additionally, our analysis framework provides a blueprint for further research

investigating whether prosody can serve as a predictive biomarker of executive dysfunction.

Part of the data used in this study is publicly available upon request. Researchers who wish to acquire

access to the data are kindly asked to contact Julia A. Camilleri at spexdata@fz-juelich.de, as described

in the related publication Camilleri, J.A., Volkening, J. et al. SpEx: a German-language dataset of speech

and executive function performance. Sci Rep 14, 9431 (2024). https://doi.org/10.1038/s41598-024-
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10-fold cross-validation design for each executive function target.

Prediction of executive function targets by prosodic features.

Cross-validation model with confound removal and stratied by target distribution. Only targets with

positive R² values are displayed. TMT BTA = Trail Making Test - processing time part A, TMT BTB = Trail

Making Test - processing time part B.
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Feature importance for TMT BTA.

TMT BTA = Trail Making Test - processing time part A, SD = standard deviation, M = mean, PD = picture

description, RS = retelling a story, FS = ctional storytelling.
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Feature importance for TMT BTB.

TMT BTB = Trail Making Test - processing time part B, SD = standard deviation, M = mean, PD = picture

description, RS = retelling a story, FS = ctional storytelling.
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Prediction of TMT targets in different conditions regarding confound removal and stratication. TMT BTA

= Trail Making Test - processing time part A, TMT BTB = Trail Making Test - processing time part B,

confounding variables (sex, age, education) and stratication: with CR = with confound removal, strat =

stratied, without CR = without confound removal.
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Prediction of TMT targets in different conditions regarding different confound removal models. TMT BTA

= Trail Making Test - processing time part A, TMT BTB = Trail Making Test - processing time part B,

confounding variables (sex, age, education) and stratication. CRmodel = Confound removal model, RF =

Random Forest Regressor, ET = ExtraTree Regressor, Ridge = Ridge Regression, LG = Linear Regression,

withoutCR = without confound removal, strat = stratied.
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